Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 259-265, 2017.
Article in English | WPRIM | ID: wpr-728572

ABSTRACT

Excessive influx and the subsequent rapid cytosolic elevation of Ca²⁺ in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic Ca²⁺ level in normal as well as pathological conditions. Delayed rectifier K⁺ channels (I(DR) channels) play a role to suppress membrane excitability by inducing K⁺ outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under Ca²⁺-mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of IDR channels to hyperexcitable conditions induced by high Ca²⁺ pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high Ca²⁺-treatment significantly increased the amplitude of IDR without changes of gating kinetics. Nimodipine but not APV blocked Ca²⁺-induced IDR enhancement, confirming that the change of I(DR) might be targeted by Ca²⁺ influx through voltage-dependent Ca²⁺ channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated I(DR) enhancement was not affected by either Ca²⁺-induced Ca²⁺ release (CICR) or small conductance Ca²⁺-activated K⁺ channels (SK channels). Furthermore, PP2 but not H89 completely abolished I(DR) enhancement under high Ca²⁺ condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for Ca²⁺-mediated I(DR) enhancement. Thus, SFKs may be sensitive to excessive Ca²⁺ influx through VDCCs and enhance I(DR) to activate a neuroprotective mechanism against Ca²⁺-mediated hyperexcitability in neurons.


Subject(s)
Animals , Humans , Rats , Calcium Channels , Cytosol , Kinetics , Membranes , Neurons , Nimodipine , Protein-Tyrosine Kinases , Receptors, N-Methyl-D-Aspartate , src-Family Kinases , Tyrosine
2.
The Korean Journal of Physiology and Pharmacology ; : 219-228, 2015.
Article in English | WPRIM | ID: wpr-728521

ABSTRACT

Excessive microglial activation and subsequent neuroinflammation lead to synaptic loss and dysfunction as well as neuronal cell death, which are involved in the pathogenesis and progression of several neurodegenerative diseases. Thus, the regulation of microglial activation has been evaluated as effective therapeutic strategies. Although dieckol (DEK), one of the phlorotannins isolated from marine brown alga Ecklonia cava, has been previously reported to inhibit microglial activation, the molecular mechanism is still unclear. Therefore, we investigated here molecular mechanism of DEK via extracellular signal-regulated kinase (ERK), Akt and nicotinamide adenine dinuclelotide phosphate (NADPH) oxidase-mediated pathways. In addition, the neuroprotective mechanism of DEK was investigated in microglia-mediated neurotoxicity models such as neuron-microglia co-culture and microglial conditioned media system. Our results demonstrated that treatment of anti-oxidant DEK potently suppressed phosphorylation of ERK in lipopolysaccharide (LPS, 1 microg/ml)-stimulated BV-2 microglia. In addition, DEK markedly attenuated Akt phosphorylation and increased expression of gp91(phox), which is the catalytic component of NADPH oxidase complex responsible for microglial reactive oxygen species (ROS) generation. Finally, DEK significantly attenuated neuronal cell death that is induced by treatment of microglial conditioned media containing neurotoxic secretary molecules. These neuroprotective effects of DEK were also confirmed in a neuron-microglia co-culture system using enhanced green fluorescent protein (EGFP)-transfected B35 neuroblastoma cell line. Taken together, these results suggest that DEK suppresses excessive microglial activation and microglia-mediated neuronal cell death via downregulation of ERK, Akt and NADPH oxidase-mediated pathways.


Subject(s)
Adenine , Cell Death , Cell Line , Coculture Techniques , Culture Media, Conditioned , Down-Regulation , Microglia , NADP , NADPH Oxidases , Neuroblastoma , Neurodegenerative Diseases , Neurons , Neuroprotective Agents , Niacinamide , Phosphorylation , Phosphotransferases , Reactive Oxygen Species
3.
The Korean Journal of Physiology and Pharmacology ; : 135-141, 2014.
Article in English | WPRIM | ID: wpr-727684

ABSTRACT

The downregulation of A-type K+ channels (IA channels) accompanying enhanced somatic excitability can mediate epileptogenic conditions in mammalian central nervous system. As IA channels are dominantly targeted by dendritic and postsynaptic processings during synaptic plasticity, it is presumable that they may act as cellular linkers between synaptic responses and somatic processings under various excitable conditions. In the present study, we electrophysiologically tested if the downregulation of somatic IA channels was sensitive to synaptic activities in young hippocampal neurons. In primarily cultured hippocampal neurons (DIV 6~9), the peak of IA recorded by a whole-cell patch was significantly reduced by high KCl or exogenous glutamate treatment to enhance synaptic activities. However, the pretreatment of MK801 to block synaptic NMDA receptors abolished the glutamate-induced reduction of the IA peak, indicating the necessity of synaptic activation for the reduction of somatic IA. This was again confirmed by glycine treatment, showing a significant reduction of the somatic IA peak. Additionally, the gating property of IA channels was also sensitive to the activation of synaptic NMDA receptors, showing the hyperpolarizing shift in inactivation kinetics. These results suggest that synaptic LTP possibly potentiates somatic excitability via downregulating IA channels in expression and gating kinetics. The consequential changes of somatic excitability following the activity-dependent modulation of synaptic responses may be a series of processings for neuronal functions to determine outputs in memory mechanisms or pathogenic conditions.


Subject(s)
Animals , Rats , Central Nervous System , Dizocilpine Maleate , Down-Regulation , Glutamic Acid , Glycine , Kinetics , Long-Term Potentiation , Memory , N-Methylaspartate , Neurons , Plastics , Receptors, N-Methyl-D-Aspartate
SELECTION OF CITATIONS
SEARCH DETAIL